

SHOP DRAWING SUBMITTALS
SHOP DRAWING SUBMITTALS
 and
 $=\mathrm{m}$ 12 1

delegated engineering

 $=\mathbf{m}$ $\pm=2$
 momem anamanan

STRUCTURAL OBSERVATION

Exawaway
$=$
$3=$

SPEEIAL INSPECTIONS and TESTS

foundations

OUNDATIONS
 1 1

 1 ＝mamamaymam
 $=5$

CONCRETE

Nomen
\qquad

$= \pm=$
1

$=2$

$0 \pm$ maw

$1{ }^{2}$
mawawaivavasamawa
1

Mamanamanain
2.20
，masuman

Ns		Level referencing
${ }^{\text {Mapmomer }}$		\％＝－
		momin
		戓交
，		边
		seamex
		cmamus
		anasam
Ewn	Eve mexumu	
	\％ix eitices	seamam of
		¢eam，
	\％itu ixim	边
Wig		Nay
		cana

YMBOL

SYMBOLS $\widehat{1}$	ful szz section
！	partal section
（1）	elevaton
（1）	detal
A	revsion
	CFS STUD WALL POINT LOAD FROM ABOVE
7	CIt panel span oriectoon
s®	soub нockng
$x \times x \times x$	solio blockng unoer
－－－－	cross bacamg
7，	slabpane step modation
－	Steel moment commecton
，	STEEL BEAM WEB PENETRATION （DEPTHxWIDTH） FOR MORE INFORMATION SEE PLANS AND DETAIL

＋
PRECMBER：C
\rightarrow cisem

wnomanew cxss．0．0

reinforcing						
2max						
Noxemex						
\cdots						
＊＊＊＊＊＊＊＊＊＊＊＊＊＊						
＂－momememe						
mwnum concrete wal remerorement						
	\pm	，menememeam				
	为	为	－			
Mmumustab ennorcenent						
		，mememome				
	and	为				
边						
边						
Nomen						
${ }^{2}$						
Lap splices not shown on the be drawings shall not be allowed unless approvedin witing by the Engineer．						
in writing by the Engineer．						
	20	－	Semememe			
			met			
			\％			
		＋				
		，				

NON-STRUCTURAL CONCRETE TOPPING

\% = = wr
: Amasmame
xam

"=
CONCRETE ANCHORS (Post Installed) mexine \qquad 1

 2mex
ms=
man

$=\square=2$

mesmanmex
mawamex

ARCHITECTURALY EXPOSED STRUCTURAL STEEL

mavavawaianamayaw

GLUED-IN RODS

 0 $\pm=2$

SHEAR CONNECTORS- COMOSITE WOOO BEAMS AND PANELS

=aniky
 masmex
man mix

$x^{2}=$ mam		
$\underline{2}=$		
\%)avaxax		
まvazavazavava		
\qquad		

BUCKLING-RESTRAINED BRACES (BRB) 1

CSG Consultants, INC
APPROVED

\％m	5		－	＋
		\％	mat	
matamemmemmeme		\times		
		＊		
\％amm				

＂－	\％ex	\％omor	nems
		${ }^{\text {cmamam mame }}$	
	\％extux mita	－	
Smemam	（\％）．9．	$\times \times$	
	Neseatazat，	\times	
5mmememe	cema	＊＊	
	motmem	＊	12
Vombonememememme		＊	
处＝＝	comek	＊	
comestame	comat	＊	
	Nexatum	＊	
5mbememm	cesater	＊	
	cosse．．．	＊	

\ldots				
＂me		semm		nemb
	\％atameme		＊	－axawawasw
	Deammamese			amswasm
				＝$=$ m
bexmemen			＊	${ }^{2}$
－maxax				
			＊	
mammemememman	andemmantex	＊		5mamsmexmenm
				\％$=$ avex
				込
5mamemmax	ossememume			
－	${ }^{\text {asacastasana }}$		＊	
	osseostaman		＊	
	cemem			
				$0^{*}={ }^{2}$
	5enmem			
	－			momene
mommamex				发
				$\pm=2=2=2$
				边
				2．EOR or EOR＇s representative 3．Third－party qualfifid agency approved by the AHJ All secondary parties are to review the following items：

8) ZONE PRESSURES - ROOF PLAN
(wis)

ZONE PRESSURES -WALL ELEVATIONS

SUPERIMPOSED DEAD LOAD (SDL) DESIISNATIONS						
nemenaor	Nut			ciome	Omom	oneracoves
-	\%omembum		i	\%	$\stackrel{0}{\circ}$	

(6) Roof -Loading plan

(4) Level 4-Loading plan

${ }^{2}$) LEvEL 2 -LOADING PLAN

(5) LEVELEL 5 -LOADING PLAN

CsG consultantsi inc. APPROVED
10
(3) LEVEL 3-LOADING PLAN

 Man
为

Level 02

(sion futh bullding section
 APPROVED
 $\underset{\substack{\text { By }}}{\text { By }}$

2. Full building section

 APPROVED

PLan
*)
*)

$\int_{\text {PC4E }}^{\text {PC4E ELEVATOR DETALL }}$

CSG Consultants, INC. APPROVED

EQUILIBRIUI
$=\mathrm{E}$
$=2=$
 APPROVED

8id BEAM TO CONT COLUMN SECTION
3) TrPICAL BEAM TO CONT COLUMN DETALL

EULILIBRIU
 \ldots

ROOF MAIN GIRDER @ UIS CLT THRU COL
(CC4.

FLOOR MAIN GIRDER @ UUS CLT THRU COL

(3an)
 FLLOOR MIN GIRDER @ OFFSET CLT THRU COL
$($ CCC1.0.0)
$(1) y$

(11) TYPIIGAL GLAZING SUPPORT
geny

(9) TYPICAL ROOFFLIOOR CLTEDGE PL

NoRTH CLT EDGE STIFERNER @ LEVEL $4 \&$
ROOF

nalerverr

vallerovelar
6 TYPical gl naller fixing detall

4. TYPICAL ROOF CLT LAP @ PARALLEL SPAN DIR

TYPICAL Roor CLT PANEL JoINT CONN @
SPRINKLER RECESS

TYPICAL FLOOR CLT PANEL JOINT CONN
SPRINKLER RECESS

$$
\begin{array}{ll}
\Delta \\
8
\end{array}
$$

TYPICAL FLOOR CLT LAP
@PARALEL SPAN DIR

(1) TYPICAL ROOFFLLOOR CLT PANEL JOINT CONN

(I2) ALLCNG GIL 3 - TO 3-PLY CLT STEP DETAIL

 APPROVED

(4) North CLT EDGE STIFFERNER SPLICE

1) TYPICAL CLT TO BEAM CONn detall

Sall

Stan $\frac{\text { SECTION }}{}$

© CLtupstand elevation along Grl 6

EQUILIBRIU

TYPICAL FLOOR CLT CONC TOPPING SHEAR CONNECTION

${ }_{\text {sita }}^{4}$ TYYPICAL CLT TOPPING STEP

S^{3} Th2 TrPICAL COLLECTOR SLAB AT COLUMNS

 APPROVED

[^0]EQUILIBRIUN

4. gravity col base plate-plan

(4) Gravity col base plate-elevation

24) BRBF BASE PLATE 2-PLAN

[^1]

s8 PLAN Detall

(36) PLAN DETALL

18) PLAN Detall

(34.) TRANSFER beam detall

Now
(1A) TRANSFER BEAM DETALL

3. $\begin{gathered}\text { TRANSFER BEAM DETALL } \\ \text { @ GLL } \\ 8\end{gathered}$

LIBRIUM APPROVED

COLLECTOR CONTINUITY PL

롤․․․
($\left.{ }^{3 \times 2 a x}\right)$ SECTION

5emex

(sam) STEEL OVERFRAME @ CAFE STAR SECTION

[^2]> 9) TYP SFRS COLUMN SPLICE
> Nors.

$$
\begin{aligned}
& \text { TYP SFRS CoLUMN SPLICE }
\end{aligned}
$$

7. TVP BRBF PROTECTED ZONE

Quilibriu

 5

brbe conn at beam intersection

(6) TYPICAL BRBF COLUMN TO SLAB DETAIL

BRBF CONN AT BEAM TO COLUMN
INTERSECTION

GRID 8

GRID G

COREBRACE

 APPROVED APPROVED

NOTES:

 Symbols Legend:

```
\,
```


COREBRACE

bolted gusset overall lavout procemure $\begin{gathered}\text { sone ms } \\ 1\end{gathered}$

trpical Core and casing configuration 5

GENERAL NOTES: G1. SEE PROJECT DRAWINGS FOR ADDITIONAL INFORMATION G2. CORE PL A36 SPECIAL (Fy RANGE PROVIDED ON COREBRACE SCHEDULE) G3. CASING A500 GR-B OR A53 GR-B G4. LUG PLATE A572 GR 50 G5. GUSSET PL AND REPAD PL A572 GR 50 U.N.O. G6. ALL STIFFENERS AND DOUBLER PL TO MATCH BEAM AND COLUMN GRADE. G. USE ASTM F3125 Gr A490-SC/F2280-TC BOLTS. BOLT HOLES IN GUSSET ARE OVERSIZED. BOLT HOLES IN BRB ARE STANDARD. G8. CLASS A (TOOL CLEAN) ALL FAYING SURFACES.
STIFF PL TO EACH SIDE OF GUSSET. WIDTH TO MATCH BEAM FLANGE WIDTH. ($\mathrm{t}_{\mathrm{fb}}+1 / \mathrm{m}^{\prime \prime}$ MINIMUM THICKNESS) SEE NOTE 5 . IF BRACE ON OPPOSITE SIDE IS SPECIFIED, USE THE LARGER Wc WELD.

plan vew

NOTE: BOLT HOLES I I CONNECTION LUGS ARE STANDARB HOLES

TrPICAL Connection at chevron top wio oubler 15

TYPICAL Connection at V botrom wo ooubler 20

Sisiman

brb casimg gurid in concrette-tricial detall detin

TrPical connection at chevron Top wi doubler 16

these phan and oblili Ahe

- DRAG plate transition

(8) DRAG PLATE TO BRBF DETALL

(4.) TYPICAL DIAPHRAGM TO BRBF @ ROOF

Rrbe roof diaphragm connection
ELEEATION IN EN DIRECTION
NEN

${ }^{26}$ DIAPPRAGM TO BRBF @ GUSSET

24. TYPICLAL DIAPHRAGM TO BRBF

[^3]
drag plate diagonal connection

scemew exncepatiten rives

1) TYP DRAG PLATE DETALLS

[^4]

(2) DETAAL

TITTITTTT

SECTIO

$\omega_{\text {ws }}$

 APPROVED

PAAEL LYPE 4.C TTPICALL PROTOTYPE 1 (14' CANTLLEVER PANEL

[^0]:

[^1]:

[^2]: seбouog c92"

[^3]:

[^4]: se6auog s9zı

